3.4.12 \(\int \frac {(b \tan (e+f x))^{5/2}}{(d \sec (e+f x))^{5/2}} \, dx\) [312]

Optimal. Leaf size=96 \[ \frac {6 b^2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{5 d^2 f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}-\frac {2 b (b \tan (e+f x))^{3/2}}{5 f (d \sec (e+f x))^{5/2}} \]

[Out]

-6/5*b^2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(
1/2))*(b*tan(f*x+e))^(1/2)/d^2/f/(d*sec(f*x+e))^(1/2)/sin(f*x+e)^(1/2)-2/5*b*(b*tan(f*x+e))^(3/2)/f/(d*sec(f*x
+e))^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2690, 2696, 2721, 2719} \begin {gather*} \frac {6 b^2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{5 d^2 f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {2 b (b \tan (e+f x))^{3/2}}{5 f (d \sec (e+f x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*Tan[e + f*x])^(5/2)/(d*Sec[e + f*x])^(5/2),x]

[Out]

(6*b^2*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(5*d^2*f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]]
) - (2*b*(b*Tan[e + f*x])^(3/2))/(5*f*(d*Sec[e + f*x])^(5/2))

Rule 2690

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*m)), x] - Dist[b^2*((n - 1)/(a^2*m)), Int[(a*Sec[e + f*x])^(m + 2)*(b*Tan
[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && (LtQ[m, -1] || (EqQ[m, -1] && EqQ[n, 3/2]
)) && IntegersQ[2*m, 2*n]

Rule 2696

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[a^(m + n)*((b
*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n)), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {(b \tan (e+f x))^{5/2}}{(d \sec (e+f x))^{5/2}} \, dx &=-\frac {2 b (b \tan (e+f x))^{3/2}}{5 f (d \sec (e+f x))^{5/2}}+\frac {\left (3 b^2\right ) \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}} \, dx}{5 d^2}\\ &=-\frac {2 b (b \tan (e+f x))^{3/2}}{5 f (d \sec (e+f x))^{5/2}}+\frac {\left (3 b^2 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {b \sin (e+f x)} \, dx}{5 d^2 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=-\frac {2 b (b \tan (e+f x))^{3/2}}{5 f (d \sec (e+f x))^{5/2}}+\frac {\left (3 b^2 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {\sin (e+f x)} \, dx}{5 d^2 \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ &=\frac {6 b^2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{5 d^2 f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}-\frac {2 b (b \tan (e+f x))^{3/2}}{5 f (d \sec (e+f x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.85, size = 81, normalized size = 0.84 \begin {gather*} \frac {b^3 \left (-1+\cos (2 (e+f x))-6 \, _2F_1\left (-\frac {1}{4},\frac {1}{4};\frac {3}{4};\sec ^2(e+f x)\right ) \sqrt [4]{-\tan ^2(e+f x)}\right )}{5 d^2 f \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*Tan[e + f*x])^(5/2)/(d*Sec[e + f*x])^(5/2),x]

[Out]

(b^3*(-1 + Cos[2*(e + f*x)] - 6*Hypergeometric2F1[-1/4, 1/4, 3/4, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4)))/(5
*d^2*f*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.40, size = 565, normalized size = 5.89

method result size
default \(-\frac {\left (6 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )-3 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )+6 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-\left (\cos ^{3}\left (f x +e \right )\right ) \sqrt {2}+4 \cos \left (f x +e \right ) \sqrt {2}-3 \sqrt {2}\right ) \left (\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}\right )^{\frac {5}{2}} \sqrt {2}}{5 f \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {5}{2}} \sin \left (f x +e \right )^{3}}\) \(565\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/5/f*(6*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-
I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*x+
e)-3*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin
(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*x+e)+6*
(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+
e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-3*(-I*(cos(f*x+e)-
1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^
(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-2^(1/2)*cos(f*x+e)^3+4*cos(f*x+e)*
2^(1/2)-3*2^(1/2))*(b*sin(f*x+e)/cos(f*x+e))^(5/2)/(d/cos(f*x+e))^(5/2)/sin(f*x+e)^3*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e))^(5/2)/(d*sec(f*x + e))^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 131, normalized size = 1.36 \begin {gather*} -\frac {2 \, b^{2} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )^{2} \sin \left (f x + e\right ) - 3 i \, \sqrt {-2 i \, b d} b^{2} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 3 i \, \sqrt {2 i \, b d} b^{2} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{5 \, d^{3} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

-1/5*(2*b^2*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))*cos(f*x + e)^2*sin(f*x + e) - 3*I*sqrt(-2*I
*b*d)*b^2*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x + e) + I*sin(f*x + e))) + 3*I*sqrt(2*I*b*d)*
b^2*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x + e) - I*sin(f*x + e))))/(d^3*f)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))**(5/2)/(d*sec(f*x+e))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4371 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e))^(5/2)/(d*sec(f*x + e))^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}}{{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(e + f*x))^(5/2)/(d/cos(e + f*x))^(5/2),x)

[Out]

int((b*tan(e + f*x))^(5/2)/(d/cos(e + f*x))^(5/2), x)

________________________________________________________________________________________